Econ 804 Micro Jan 14, 2011

Review of Repeated Games

% Repeated Game
> Perfect Information

» Objective: Can threats or promises about future behavior influence current behavior in
repeated relationships?

«» Example. Prisoners’ Dilemma

C 4,
D 5
» Repeating this game:

* NE is unique (so is SPNE), because defect is strictly dominant in each subgame.

% Notations

» LetG ={A4, ..., Ay, Uy, ..., u,} be a static game of complete information in which players
1,..,n  choose actions  a; € 4; simultaneously, and payoffs are
uy(ayq, .., ay), .., uy(ay, ..., a,). Call G a static game.

» LetG berepeatedt =0, ..., T times (T = oo is possible)

» Pure strategies only.
* Letaf be player i’s action at t, a; € A;
* Leta! = (ai, ..., al) be the action profile at ¢
» Letht ={a%a?, .., at"'} be the set of possible histories
* Letsf: H® - A; be the strategy function for player i that maps the set of possible

histories into the set of actions

% Finitely Repeated Games (T is finite)

> Proposition. If G has a unique NE, then the finitely repeated game GT has a unique SPE
in which the NE of G is played at every staget =1, ..., T.
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Repeated Games (cont’d)

% Prisoners’ Dilemma repeated twice (with perfect recall)
C D
C 4,4 0,5
D 5,0 1,1

% Proposition. If the stage game G has a unique Nash equilibrium (NE), then for any finite T,
the repeated game G has a unique subgame perfect equilibrium, in which the unique NE of
G isplayedinallt =0,...,T.
» Proof. Use backward induction. In T, there is no future, so the unique NE will be played.
That means, in T — 1, there is no future to be conditioned on, so the unique NE will again
be played.

» Note that the prisoners’ dilemma game has the property that its NE is the “minmax”
payoff.
= Definition. A player’s minmax payoff is given by

v; = minmaxu;(a;, a_;)
a_; a;

e Note that this may be due to the consideration that the other players are trying to
“punish” player i.
e FEach game has a minmax payoff.
= Example of minmax payoff.

L R
U -2,2 1,-2
M 1,-2 -2,2
D 0,1 0,1

Player 1’s feasible payoffs are -2, 0, 1. Note that Player 1 can play D, such that his
minmax payoff is at least 0. But can Player 2 hold Player 1 to playing D? Apparently
no pure strategy of Player 2 can do this. If we allow for mixed strategy, suppose
Player 2 plays L with p and R with 1 — p. Then,

vp =0

vy =p—2(1-p)

vy =-2p+(1-p)

1
vy=vy = p—-2(1-p)=-2p+(1-p) = P=3

« Proposition 2. If the payoff profile in every NE of G is the minmax profile, then for any T,
the outcome (a?, ..., a’) of any NE of G is such that a® isa NE of G forallt = 1,...,T.
> In other words, if there is a unique NE with minmax payoffs, then GT has unique NE with
minmax payoffs.
= Proof. By contradiction. Consider the prisoners’ dilemma.
The minmax strategy is
(D,D,D,D,D,...,D)
Suppose there is another NE strategy
(p,n,C,C,C,...,D)
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> Observation. In any NE of G7 the average payoffs are at least equal to the minmax
payoffs of the stage game G.

» Suppose we have multiple NE—what happens then?

C D R
C 4,4 0,5 0,0
D 5,0 1,1 0,0
R 0,0 0,0 3,3

Possible SPNE: (D, D regardless), (R, R regardless) (D, R regardless) (R, D regardless)
These all consist of NE in the stage game. But the following is also SPNE:

(C' {g iofthCerwise)

+*»+ Recall (notations)

at = (at, ...,al), actionprofileint, a; € A;
ht = (a%at, ...,at™ ), history at ¢
st HY > 4

si = {s{}t=0
Assume: plays max either discounted sum of payoffs:

T
z §tu;(a")
‘ t=0
or average discounted present value

T

1-6

WZ 6'u;(a")
t=0
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Repeated Games (cont’d)

% Recall that when the prisoners’ dilemma game is repeated twice, we could get people to play
the Pareto superior strategy at the first stage.
» Benoit/Krishna (1985, Econometrica)

Infinitely Repeated Games

% We don’t have the last period—so we cannot use backward induction.

% One Stage Deviation Principle.
> Definition. A one stage deviation from a strategy s; is a strategy §; such that
$i(hy) # s;i(hy), for some unique t and h;
'§i(ht) = Si(ht)J Vht F* ht
» Proposition 3. One Stage Deviation Principle (for multi-stage games with observed
actions) A strategy profile s = (sy, ..., Sy) is subgame perfect if and only if there is no
profitable one-stage deviation after any history h; € H, for any player i € {1, ..., N}.
= In other words, no one can gain from deviating once and conforming to s thereafter.
Proof. (&) “obvious”: if it is profitable to deviate once, then it’s not subgame perfect.
(=) it’s easier to prove the contrapositive: if a strategy profile is not subgame
perfect, then it is profitable to deviate at least once.
If s; is not SPE, then there exists a deviation §; # s; which is profitable for i. If
the deviation happens in T periods, then it is also profitable to just deviate in one period.
Consider a one stage deviation that occurs in the “last” period T,
S;r(ht) — {gl(ht) lf ht = }}:T
s;(hy) if hy # hp
Two possibilities:
= Ifs] (h,) is profitable, then the one stage deviation is profitable — done!
= Ifs”(h.) is not profitable, then look at s} !, and so on. By iterative argument, there
must be one one-stage deviation.
= To prove the proposition for T = oo, need “payoffs continuous at infinity” (i.e.
payoffs are bounded).
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Folk Theorem

% Assume
» 2 players
» Stage game G has a unique NE a*

+«» Definition. A strategy profile s* in a repeated game G~ involves Nash Reversion if and only
if s; calls for playing some outcome path {a‘}2, until one player deviates, when a* is played
thereafter.

< Lemma. A Nash reversion strategy profile s* form a SPE if and only if

Vt, le € Ai,Vi : Z ST_tui(aT) = ui(di,a_i) + Z 5T_t_1ui(a*).
T=t T=t+1

S
=1—gwi(a’)

» Proof. (&) Suppose the above inequality does not hold. Then, the inequality sign reverts,
and thus there exists a profitable one-shot deviation. Thus, s* is not SPE.
(=) Suppose s* is not SPE. Then there exists a profitable one-shot deviation, and thus
the above inequality does not hold (note that the above inequality says that there does not
exist a profitable one-shot deviation). m

» Note 1. The above inequality greatly simplify if the outcome path is stationary, i.e.
at = a Vt. That is,

6
1-6
» Note 2. The above inequality is easier to satisfy the higher the . That is, if the inequality

is satisfied for &, then it also holds for 6’ > 6.
= [f§ — 1, everything that is better than the NE of G is supported.

n}f}xui(ai; a-) —u(a) < [ui(a) —w;(@”)], =12

+«+ Proposition 4 (Folk Theorem I due to Friedman (1971)).

Let a € A be the stage game action profile such that

u;(a) > u;(a”), i=1,2.

Then, there exists a § such that whenever 6 > §, playing a in every period t constitutes a

SPE outcome path with Nash reversion strategies.

» Issue 1. There is a possibility of re-negotiation.

» Issue 2. The NE could involve very high payoffs, so that the “punishment” is not harsh
enough. If the players’ minmax payoff is lower than the NE payoff, then the “punishment”
can be made harsher by playing the minmax strategies (but this leads to the problem
whether the player has an incentive to play the minmax strategy). So do not use Nash
reversion unless it is also the minmax.
= This is to say that, if there is a NE whose payoft profile coincides with the minmax

payoff profile, then any outcome that can be supported by any SPE can also be
supported by Nash reversion strategies. That is, it is sufficient in such cases to
consider Nash reversion equilibria in characterizing the set of payoffs that can be
supported as the average payoff of some SPE. However, if no NE whose payoff
profile coincides with the minmax payoff profile, then the set of Nash reversion
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equilibria may exclude some equilibrium outcomes; namely, there may be other

outcomes that can be supported by some SPE but not Nash reversion equilibrium. (cf.

Mailath & Samuelson (2006, 77))
» Recall:

v; = min {max u;(a;, a_i)}
a—; a;
Definition. The set of feasible, individually rational payoffs (convexified) is
VIR = convex hull{v > v;|Vi,3a : u;(a) = v}.

Proposition 5 (Folk Theorem I1, due to Fudenberg & Maskin (1986)).

Suppose that dim(V/®) = 2. For any v € V'R [note that v has to be STRICTLY individually
rational], there exists a § < 1 such that for all § > §, there is a SPE of G* with average
payoff equal v.

» Problem. Standard equilibrium concepts do not pin down the path of play of patient
players.

» Proof. The basic idea is to have players minmax a deviating player and reward them in
later periods for punishing the deviator.

Assume that m’ is the minmax action profile is a pure strategy. Choose
v' € Int(VIR) : v] < v, Vi
and let w! denote v] with € added to opponents payoff, i.e.
wi =, vl +¢€)
Strategies:

» Phase 1. Play a (i.e. u(a) = v), as long as there are no deviations. If i deviates,
switch to Phase 2;.

» Phase 2. Play m! for T periods. If player j deviates (from minmaxing i), switch to
Phase 2;. If there are no deviations, then play moves to Phase 3. After T periods,
= Phase 3. Play action profile leading to w' forever. If j deviates, again, go to Phase 2;.
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Folk Theorem (cont’d)

+«+ Proposition 5 (Folk Theorem 11, due to Fudenberg & Maskin (1986)).
» Proof (continue from last time). Given the strategies defined, choose
v, <vl<v; = wt=@W,v;+e).
Choose T such that (for § = 1)

M M
——

. ’
max u;(a) + Tv; < miny;(a) + Tv;
a a

S——’ N e
upper bound lower bound
of payoff of payoff
Need to check that players don’t have incentive to deviate in each Phase.

In Phase 1,
v, > 1 —8)M+ 81 -6y + 6T1v]
hold for § = 1. So there is no profitable deviation in this period.

In Phase 3j,j # i,
vi+e>A-8M+65(1 -6y +6TH1y]
In Phase 3;,j =1,
v > 1 —=-8)M+865(1 -8y + 6T )
These two hold for § — 1.

In Phase 2j, player i # j gets
1 =6Nw(m)+6T(w;+e) > 1 —-8)M+6(1—6Ny; +§THv]

conforming to minmaxing j deviating from minmaxing j
and will be minmaxed by j in the next period
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Dynamic (Stochastic) Games

% In repeated games: the physical environment is the same each period ¢ (i.e. the stage game is
stationary over time).
» My action in this period affects the action tomorrow. However, today’s action does not
change the form of the game tomorrow (so dynamic game is to make an extension in this
direction).

% Dynamic games:
» Environment in each period by “state”
» Current payoffs depend only on actions today and on the state
» State follows a Markov process

+« Definition. A dynamic (stochastic) game is

» Asetofplayers:i=1,..,N

> A setofactions: a; € A;(K*Y), Vi, with a® = (d}, ..., a}) being the action profile in t
» Instantaneous utility function:

ui(at,Kt) =F {z 6Sui(at+S'Kt+S)
s=0

» Transition function (law of motion):
q (Kt+1 | at’ Kt)

, Kt is the state in t
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Dynamic Games (cont’d)

% Definition. Dynamic Games:
» Setofplayers:i=1,..,N
> Set of actions: a; € A;(k), Vi
> Instantaneous utility: u;(a®, k)

Ut =E [Z 5Tui(at+f,kt+f)]
=0

> Transition function: q(kt*1|at, k)

» Focus on games with observable actions (or perfect monitoring), i.e. players observes all
past actions and the realization of kt)

> Public history at t: ht = (a% k°, al, k1, ...,a*" 1, kt™1)

> Pure strategy att: s} : HE X K > A;

+« Definition. A strategy profile $ is a (stationary) Markov strategy profile if, for any two

histories, ht and ht, of the same length (or of different length—this has to do with

stationarity) and resulting in the same state k%, we have §(ht) = 3(h?).

» This embodies the idea that “bygones are bygones”

» The Markov strategy rules out strategies like “if you play x last period, I’ll play y today”,
because past histories does not matter.

X/
°

Definition. A strategy profile § is a Markov perfect equilibrium (MPE) if it is a SPE and $ is

a Markov strategy.

» This is used to refine the SPE concept. The set of Markov perfect equilibria is a subset of
the set of SPE’s.

> Notes.
= The MPE is a refinement of SPE. (this is appealing because it typically reduces the
number of equilibria).
= Another appealing feature of MPE is that it makes simulation and estimation very
easy.
= (Can also think of this as the simplest form of behavior that is consistent with
rationality.
= In finitely repeated games, if G has a unique NE, then there is a unique MPE in which
this NE is played every period.
+» Example (from Mailath & Samuelson). Common Pool Problem / Resource Extraction
» Two players, i = 1,2
» Extract resource from a common pool
» Utility functions are

Ut = Z 8% In(cf*),
7=0

where ¢/ = consumption = resource extracted at time t by player i
> The stock of resources k¢ evolves according to
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kttl = 2(kt —ct = ¢b), k® = initial state >0, Vt:k'>0

» Stage game: in each t

* Players simultaneous announce cf

= Consume

ctifct+cl <kt
cf =11 . ,

Ekt if otherwise
=  Use dynamic programming to solve the game. Look for stationary (independent of t)

and symmetric (independent of i) MPE’s: cf (k)

e Player i’s value function:

V(i) = max {In@ +6v (2(k - ¢ - c(0)))}

FOC’s:
1 N
g0 =2V (2(k - & = c(k)))
Use guess and verify: c(k) = ak

c®(k®) = ak®
cl(kV) = ak! = 2a(k® — 2ak®) = 2ak’(1 — 2a)

ct(k?) = a2t(1 — 2a)tk°
Then the value function (with equilibrium strategies) is

V(k) = 2 57 In(a2*(1 — 2a)k)

=0 o
6" 1
> V0= =15
=0
Plug into FOC:

1_25 1 1
ak T 1-8 2(k—2ak)

& -

= 2(1-2a)(1-96) =26a

1-— <
= -
a 2 >

S| &
N| =

Interpretation: in each t, players extract a proportion of 2a stock, leaving

1-2a=1 2(1_6)— °
‘= 2-6) 2-6
of the stock for the next period, which then doubles. So
286 >

growthrate = ST52 1, as é

AllvV
wl N

e Compare this to the efficient consumption/resource extraction path: need to solve

the planner’s problem:

U +u, = Z §t{In(ch) +In(cb)}

t=0
Note that ¢! = ¢§ by concavity of the log-utility. Value function for the planner is
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V(k) = max{2In & + 8V (2(k - 20))}

FOC:

% = 26V (Z(k - 2c(k)))
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Social Choice Theory

% Motivations:

» Normative: efficient allocations from general equilibrium theory do not imply that they
are just. We need an additional criterion (other than efficiency) to evaluate social
outcomes. Social choice theory attempts to study the aggregation of individual
preferences.

» Positive: understanding collective choice process (e.g. ordering toppings on pizzas, and
policy decisions, elections, etc.).

X/
L X4

Notations.
> Set of alternatives: X (e.g. candidates of election, pizza toppings, etc.)
» Setof individuals: 7 =1{1,...,1}
» Individual preferences: #; on X can be represented by u; (X)
» Set of all weak preference orderings on X: R
=  QGoal: social preference ordering >

X/
°e

Definition. A social welfare functional is a function
F:A->R

where A € R! that assigns a social preference relation =4 € R to any profile of individual
preference orderings (>4, ..., ;) on the domain A € R/,
> Note.

= We’re taking all individuals’ preferences as inputs.

= We don’t worry about how we know >; (these are the true preferences).

= We only consider ordinal preferences (i.e. intensities don’t matter, neither does

expertise)

¢ The case of two alternatives.
» Outcomes: X = {x,y}, where x = status quo, y = reform.
» Individuals: i={1,..,1}
x>y - +1
a, =\ X~y - 0
x<;y - -1
» Preference profile is a list (a4, ..., a;)

«» Definition. A simple majority welfare functional is the function
F:{+1,0,—1} - {+1,0,—1}
where F = sign[Y,;(a;)].
» Don’t confuse with absolute majority.
= Simple majority can happen where everyone except one is indifferent. But absolute
majority requires that over half of the population prefer one alternative over the other.

X/
L X4

Question: What are the characteristics of this simple majority rule?

1. Universal Domain (UD): F assigns an unambiguous social ranking to all conceivable
individual preference profiles.

2. Symmetry or Anonymity (S): F treats individuals equally, i.e. permuting agents’
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preferences doesn’t alter the social ranking. (note that this rules out dictatorship)
3. Neutrality (N): F treats alternatives equally, i.e. reversing everybody’s preferences

reverses the social ranking:

N _ F(—aq,..,—a;) = —F(ay, ..., a;)
4. Positive Responsiveness (PR): if
(ay,...,a;) = (ag, ..., a;)
with strict inequality for some i,
F(aj,..,a;) =0 = F(ay,..,a) =1
For example, the absolute majority rule does not satisfy PR, neither does the constant rule.

« Theorem | (May (1952)). A social welfare functional satisfies UD, S, N, PR if and only if it

is the simple majority social welfare functional.
» Note: MWG incorporates the UD into the definition of social welfare functional.
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Proof of May’s Theorem

o,

% Proof of May’s Theorem.
» We already know that the simple majority social welfare functional satisfies UD, S, N,

PR. So the (=) direction is done.
» (&) Notice that

» S= > onlydependsonn* =#{i:aq; =+1}andn™ = #{i : a = —1}.

F(ay,..,a;) = G[nt(ay, ...,a;),n" (ay, ..., a;)]
* Claim:n*(a) =n"(a) = F(a)=0
F(a) = G(n+(a1, e ap),n” (ay, ...,a,))
+

=4 Gn*(—ay, ..., —a;),n~%-"%)

F(—a)
=—F(a), [byN]
=>F(a)=0
* nt(a) >n"(a) = F(a) = 1. Suppose wlog that

Q= <+1,...,+1,...,—1,...,—1>, H>]J

H individuals J individuals

a' = <+1, O P S ...,—1)
J J

F(a') =0 by the previous result. Then PR implies that F(a) = 1. Similarly,
n(a) >nt(a) = F(a)=-1.
Therefore, F () has to be simple majority rule. |

+» Example. Pairwise Comparison of Alternatives
» 3 individuals

71 72 73
X y z
y z X
z X y
The social preferences (according to simple majority rule):
XEs Y, VEsZ 2%y

But this is not transitive. This is known as the “Condorcet paradox”

= [f we want to avoid this result by ruling out the profiles that lead to this outcome, we
lose UD.

= So when we introduce more than 2 alternatives, we lose May’s result completely.
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The general case of more than 2 alternatives

% Arrow’s Impossibility Theorem.
» Notations. Recall

= The social welfare function (SWF) is
F:A->R
where A € RF is the set of all possible rational preference relations over X
zs=F(=1, .., 2p)

» Properties:
» UD: A=R!
= P:Viis>y = x>y

= [IA (independence of irrelevant alternatives): social ranking of any two alternatives

depend only on how individuals rank these two alternatives.
Forany {x,y} c X, {>=, »'} € R!, if

XEY © XF Yy ANYyEX S yEx
We have

XZsY © X2y NYZsX & yrsX
e Example. Borda rule.

71 72 73 Zs
X y z X
w z X z
y X w y
z w y w

r;(x) = n where n is the rank in i’s preference ordering
x: 1+3+2=6
y: 3+1+4=8
w: 2+4+4+3=9

z: 4+2+1=7
If we switch ranking between irrelevant alternatives w, z

X y w w
y w z y
w z X X
z X y z
x: 1+4+3=8
y: 2+41+4=7
w: 3+2+1=6
z: 4+3+2=9

This contradicts IIA. Suppose the only irrelevant alternative is w, the outcome
also contradict ITA.

% Theorem (Arrow). Suppose |X| = 3. If the social welfare functional F satisfies UD, P, and

IIA, the F is dictatorial, i.e. there exists an individual i € I such that Vx € X and
(=24, ., 7)) ER,wehavex >,y = x>, y.
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% Social Choice Theorem.

> Definition. a social choice function (SCF) is a function f : A — X that assigns one
alternative x € X to all profiles of individual preference orderings >= (>4, ..., >;) in the
admissible domain A € R!.
= UD: A=R!
= P Vx,yEX,VEEANVi: x>y = f(Z)#y
»= M: monotonicity. Suppose f(>) = x. If, Vi € I,Vy # x € X the profile >’ is such

thatx >;y = x >;y,then f(>") = x.

» Theorem. Suppose |X| > 3. If the social choice function f satisfies UD, P, and M, then

f is dictatorial, i.e. there exists an individual i € I, such that
Vx € X,V(=q1, ..., 7)) ER: f(=4, ..., 7)) € argmax{>; |x € X}
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Proof of Arrow’s Impossibility Theorem

«» Refer to class handout.
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Majority Voting

R/
A X4

X/

*

X/

A way to get around the Arrow’s impossibility theorem is to drop the requirement of
universal domain (UD), in light of the consideration that not all preferences are likely to
occur.

> Restricted Domain: majority rule the median voter.

Definition. A preference profile = € R! is single-peaked if Vi € {1, ...,1},3x} € X
(@) x; >y, Yy € X\ {x;}
b)x=>z>y = z>;yand y>z=>x; = z>;y,where“>"1is a linear order on

the set of alternatives X.

» Note that to establish single-peakedness, we only need to find ONE linear order for
which (a) and (b) holds. In other words, to reject single-peakedness, we need to check
ALL possible linear orders.

» Note that “single-peakedness” is a statement about the entire profile of individual
preferences. This restricts the preference profile to be a specific subset of all the possible
preference profiles.

Definition. The individual m € [ is the median voter or median agent for the single-peaked
preference profile > € R! if

N |~

I
#{i € I|x] fon}zz N #i€ellx] <xp}>

» Note, if I is odd, then m is unique.

Proposition. If the preference profile = € R! is single-peaked, then x;;, cannot be defeated
by any other alternative in pairwise majority vote:

XmZm Y, VY €X\{xn}
where >, is simple majority rule social preference ordering. Hence, a Condorcet winner
exists and coincides with the media agent’s bliss point.
» Proof. By inspection.

Theorem (Median Voter Theorem 1). Suppose I is odd, and the strict preference profile
>; € R! is single-peaked, then,

V{ix,y}EX:x>,y = x>yy
where m is the median voter. Hence, the social preferences generated by pairwise majority
rule are complete and transitive.

Comparison to institutions of voting in practice.
» Suppose we define “majority voting” as follows:
= Direct democracy: individual vote directly on X
= Sincere voting: voters vote for the alternative they actually prefer
= QOpen agenda: voting takes place over pairs of alternatives, and the winner in one
round is pitched against another alternative in the next round, and the set of
alternatives includes all policies.
Then, we have the following
= Corollary 1. Under the conditions of the MVT I, the median voter’s bliss point x;, is
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the unique equilibrium policy (stable point) under majority voting.

e Can consider this as a positive departure from the normative analysis of
aggregating individual preferences. Here, instead of thinking this as a response to
Arrow’s impossibility theorem by dropping UD (which is quite valid), we think of
this as what will actually happen in a direct democracy.

» Suppose we define “political competition” as follows [Downs (1954)]:

= 2 political parties, j € {4, B}, choose platforms x; € X

= Objective of each party is to maximize the number of votes

= The platform that gets at least half the votes wins, and there is a coin-throw if there is
a tie.

Then the following is true:

= Corollary 2. Under the conditions of MVT I, the game of political competition has a
unique NE in which both parties propose the media voter’s bliss point x; = x5, Vj.

% Setting the MVT to work (examples).
» Redistributive Taxation .
= u; = ¢;, where c is composite consumption commodity
* Policy (t,g) € R? where
e t € [0,1] is the proportional income tax
e g is the lump-sum transfer
= Government budget constraint is a Laffer curve:

1 2
gl =(e-38) %
i

expenditure
e Note that efficiency dictates that optimal tax rate should be zero.
= [ndirect utility

v(t,g;y) =yi(l-t)+g

1 v
= v(ty) =y (1-t)+ (t _Et2)¥
The first-order condition is
ov XiVi
— = —y; 1—-t =0
5> l—-t=c—— & ti=1-="
v/l X/l

Note that the second derivative is
0%v <0
ot?
That is, the indirect utility is strictly concave, i.e. single-peaked.

Single-peakedness and the fact that the most preferred tax rates are monotone in

income implies that the median voter is the person with a median income individual.
Therefore, we can invoke the MVT I to conclude that there is a unique equilibrium
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tax rate either under majority voting or political competition is the median voter’s
bliss tax rate:

0 if ym>y
t" = " _
1-— yT if ym < y
y
e This says that tax rate is positive if the median income is below average income,
which coincides with what we observe in reality.

> Redistributive Taxation II. Same as above except that g; can be any amount as long as
2igi = (t - %tz) Y. Vi- The indirect utility can be written as

v(t, gsy) = A=ty +g;
= Everybody’s bliss point is to tax all the individual’s income an redistribute the whole
revenue to themselves.

This shows that if voting happens in more than one dimensions, we’re back to the
Condorcet paradox.
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Median Voter (Cont’d)

% Examples of MVT (cont’d)
» Redistributive Taxation III. (same as example 1)
» ;= ulc, € 0;), u. > 0,u, < 0 (£ is labor supply), 8 is productivity/wage
" g=0-0D8f+yg
= 0, ~ f(6;) is the distribution of productivity
= Government budget constraint:
e Average labor income: L(t,g) = Y,; f(0,)6;%;(t, g; 6;)
e Per capita budget constraint: g = tL(t, g)
= Indirect utility function as
v(t, g;0;) = Hl,?z}xui((l — )64 + 9,455 6;)

Using the envelope theorem:
v = uo(~0:£i(t,; 6))
Vg = U

Note that there is NO concavity for v.

> Definition. A preference profile = € R! satisfies the single-crossing property (SC), if
there exists a linear order = on X and an order on the agents {1, ..., I} such that
Vx>yVi>ii(xxy = x2y) A (x>y = x>y)
The profile satisfies strict single crossing (SSC) if
Vx>yVi>i:xzy = x>y

g 0,

(t' g) 9}

0; <6;
(t' g) ~o; (t" g’)
9" = (t.g) >e; (t'9")

» Single Crossing Property as defined in Milgrom and Shannon (1994):
Let X be a lattice', T be a partially ordered set’, and f : X x T — R. Then f satisfies the
single crossing property in (x; t) if

"A set X is a lattice if for every pair x,y € X, the join (or supremum) x V y and the meet (or infimum)
x Ay do exist as elements of X. In other words, a lattice is a partially ordered set in which any two elements have a
supremum and an infimum.

* A partially ordered set X is one with a binary relation, >, that is reflexive (vVx € X : x > x), antisymmetric
(x=zy AN y=x) = x=1y),and transitive.
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f&,t") > f(x"t") = fx',t) > fx",t)
vx' > x",vt' > t": and
f(xl‘ t”) 2 f(xll’ t”) : f(xI, t,) Z f(x//’ t/)
Iff(x',t") = f(x",t") = fx',t") > f(x",t") for every t' > t”, then f satisfies strict
single crossing property in (x; t).

» Theorem (Median Voter Theorem I1). Suppose [ is odd and preferences satisfy (SSC),
then
Vix,y}eEX:x>p,y © x=yYy
where m = (I + 1)/2. Hence, social preference order generated by pairwise majority
rule is complete and transitive.

= (back to example).
ve _ ucbiti(t,g;6;) _

o(t,g;0;) =——= = 0,4;(¢,9;6;)
MRSt g after tax income of {
So, SSC = 6;%; is increasing in ; = most preferred tax rate by 6,, is equilibrium
policy.

<% Definition. Spence-Mirrlees Condition (SMC). Let X € R* and u : X X I = R with u,, > 0.

Then, u(-) satisfies the SMC on X if for all x € int(X) and y € R
(e, y, i) = Cux(xy,0)

7 uy (x,y,1)

is (strictly) increasing in i.

> Note.
= u(-) satisfies (S)SMC if and only if the preference profile it represents satisfies (S)SC
= Lety = f(x), the function u(x, y; i) satisfies the (S)SMC if and only if u(x, f(x), i)

satisfies (S)SC for all functions f(x).
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Mechanism Design (Implement Theory)

% Introduction. In the previous section, we looked at ways to aggregate individual preferences
into a social preference. However, this relies on the assumption that individual preferences
are publicly known. In reality, this is not true. In mechanism design, we look at situations
where individual preference profiles are not publicly observable. So if we have a social
choice function, we use mechanism design to implement it; or if we can’t implement it,
mechanism design can tell us how far we can go with it (second best).

The mechanism design problem — general framework.

>
>

Agents:i =1, ...,1
Principle (social planner, mechanism designer), may be interpreted as
» [Imaginary player (representing society of agents) — social choice problem
= Real player (government, employer, etc.) — principal agent problem
Setting: principal designs a mechanism (i.e. a contract) to implement a particular social
choice function,
f:RI-X

(?1, ey ?1) =X
where (>4, ..., ;) may be private information.
How to model this?
= FEach agent i observes a parameter 6; € ©; that determines his/her preferences

=i (6;) € R;. Let SOW = state of the world, which is captured by a vector
0=(6,..,0)EOQ=0, X:-X0,

= Assume >; (6;) can be represented by a VNM utility function u;(x, 6;).

Definition. A social choice function, f : @ = X assigns an outcome x € X to each
possible 0 € 0.

Time structure of a generic mechanism design problem (MDP):

1
0 1 1= 2 3
1 1 l2 ]
0 is realized, Principal agents Agents play Outcome X
agents designs a decide the
observe mechanism whether to mechanism
“signals” 6; participate

Definition. A mechanism T = (Sl, .o Sy g(-)) is a collection of strategy sets (Sy, ..., S;),
and an outcome function g : §; X --- X §; = X. A mechanism (contract) is a game form.

Definition. The mechanism T (fully) implements a social choice function f(8), if the
(unique) equilibrium outcome of T in the state of the world 6 is f(6), i.e.

9(si(8y),..,s7(8)) =f(8), VOE®O.

Remarks.
= g, = “type” of agent i, representing characteristics of i, or preferences of i, or private
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information about the world.
¢ Distinguish two environments:
¢ 0; = private information of agent i — environment with asymmetric
information.
¢ 0; = observed by all agents, but not by the principal/outsider (but this does
not mean that 6; is public information, which is verifiable) — environment
with complete information.
* What is meant by “equilibrium” depends on the solution concept that is used.
e Environment with asymmetric information
¢ Bayesian Nash equilibrium
¢ Dominant strategy equilibrium
e Environment with complete information
¢ Nash equilibrium / Subgame Perfect equilibrium
¢ Dominant strategy equilibrium
e Note that since we’re designing the game, so we can choose games that have
dominant strategies, e.g. “dominant strategy implementation”. This however will
restrict the set of possible games that we can choose from.
= What is meant by “equilibrium outcome”
e Full implementation does not require unique equilibrium (about strategies), only
unique equilibrium outcome.

+ Examples.
» Public project (e.g. building a bridge).
» y € {0,1} project decision at cost ¢ > 0
* OQutcomex € X ={(y,ty,...,.t;)) : y€{0,1}, t; ER, X;t; =cy}
= [Individuals: 1, ..., I, with
ui(x,0;) =6y — t;
= SOW:6 = (64,...,0;,)

Social choice function:
»  f(6) is Pareto efficient if

y(@)=1 zgi >c
i
= P(0) is equal contributions:
c
t:(6) = 7¥(0)
But this is not implementable. Suppose B
VLEI\{1}91=91
_ c(I-1)
e> Y5> D
i%1
Suppose further that
91=C—Z§i+e, e>0
i#1
If 1 tells the truth,
y=1
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>

c — c c(I—-1 _
ul(x,e)=01—7=c—20i+6—7=¥—20i+6

i#1 i#1
If 1 lies and reports 6; = 0

u(x,0) =0
Then, for small €, lying is better.
Auction.

Principal is the owner of an indivisible object (zero valuation of the good)
Two agents, i = 1,2

Outcome X = {(yli yzrtlr tZ) ‘Y € {011}' Zly = 1! ti € Rg}

Utility: u;(x, 8) = 6;y; — t;, where 8; ~ Uy 17 is private information.
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Example of Mechanism Design

% Auction (cont’d)
» Two agents: i = 1,2
» One principal who owns the object
» Outcome:

X = {(}’1:3’2' ty,tz)

y; €{01}, yi+y,=1, t; ER, ZtiZO}
i

> Utilities:

u;(x,0;) = 0;y; — t;
iid

9i ~ U[o,1]
= Distribution of 8; is public information, but the individual realization of 8; is private
information
» Consider the social choice function (SCF):
t; = 0y

_ {1 iff 6, > 6,
1 0 otherwise
Note that for efficiency, only the second equation matters; t; is irrelevant.

» s this implementable as a BNE?
=  Suppose 8,(6,) = 6,, i.e. i = 2 announces truthfully. Then i = 1 maximizes
n]éaXE[ullel] = m@ax Pr{ez < él} [91 - él]
1 1

= max 91(91 - él)
01

Optimal solution: 8; = %91. There is no NE in which agents announce truthfully.

% First Price Sealed Bid Auction.
» Twobidders:i = 1,2
» Payoff: y; =1 if i getsthe good
u; = (81 — bi))’i' bi = bid of i

B 1 iff b, > b,
Yi = {throwa dice if b; = b;
i
0; ~ Ulo,1]

> To solve the game, guess that b;(6;) = «a;0; where a; € [0,1]. Then,
max ](91 - bl) Pr{b1 > a292}

b1€[0,a2 - /a
—P1/42

The solution is

2 2

1 1
b _{_91 if —91Sa2
L=
a, otherwise

» What is the SCF that is implemented by this auction?
v@0)=1 & 6, >0,, [efficient!!]
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1
t,(0) = 591}’1(9)

1
t,(0) = 592}’2(9)

* Note: this is the exact same SCF as the one implemented by the direct mechanism
when agents announce valuations and pay the announced valuations.
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Example of Mechanism Design (cont’d)

+*» We looked at two auctions last time:
» Direct auction: bidders bid half of their valuation
» First-price sealed bid auction: bidders also bid half of their valuation

% Second price (Vickery) Auction — [strategically equivalent to oral ascending auction]
» Buyers:i =1,2
» Submit bids: b; > 0
» Buyers with the highest bid gets the good, but pays only the second highest bid

» Claim. The strategy b; = 0; is a weakly dominant strategy.
= Bidders bid truthfully because bidding their true valuations only affect their
probability of getting the object, not the price they pay.
= Proof. The payoff of bidder i is
u; = 0;y; + money
e Suppose i bids b; = 0;.
_{Gi—ijO if 6; = b;
u; = .
0 otherwise
e Suppose i bids b; > 0;.
6;—b; <0 if b;>b; =06;
u; = HL—bJZO lfbl>912b]
0 otherwise
e Suppose i bids b; < 6;.
_{Gi—bj>0 if b; > b;
u; = .
0 otherwise
Case 1 dominates Case 2 when b; = b; > 0, and Case 1 dominates Case 3 when
HL- > bi but bi < b]

= The social choice function that is implemented with this auction is

1 if 6, > 6;
yi(6) 0 otherwise

t;(0) = 6;y;(6)
e Note that this is a different SCF implemented by the first-price sealed bid auction:

1 if 6; > 0;
@ -fL T0=0
vi(0) 0 otherwise

1
t;(60) = Eeiyi(ei)
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The Revelation Principle

« Definition. A direct revelation mechanism is a mechanism I, = (S, ..., S;; g(+)) with
S;=0;, Viel and g(0) = f(6).

% Definition. The social choice function f(8) is truthfully implementable (or incentive
compatible) if the direct revelation mechanism I, has an equilibrium in which
Sl*(el) = Hi, Viel, VBl € G)l'
» i.e. if telling the truth is an equilibrium.

+«¢ The Revelation Principle (informal definition).
Suppose the SCF f(0) is (fully) implementable. Then, f(8) is also truthfully implementable,
i.e. there exists the direct mechanism I}, = (@4, ...,0,, f(0)) has an equilibrium in which
everybody tells the truth.
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Dominant Strateqy Implementation

% Revelation Principle (in dominant strategies). Suppose f(6) that is (fully) implementable in
dominant strategies, then f(6) is also truthfully implementable in dominant strategies; i.e.
the direct mechanism I'y = {(04, ..., 0;); f(0)} is such that

VO € 0; : u;(f(6;,0-);6;) = u;(f(6:,6-:); 6;)

forall 6_; € ©_; and all 6; € 0;.
» Proof. If f(8) is implementable in dominant strategies, we know there exists an indirect

mechanism I' such that

u;((s{(0),5-0; 6;) = u; (51,515 6,), Vi, V§;, Vs_;, V6,
and
9(sf(8),s_(6-)) = £ ()
This must be true, in particular, for
§i = Sl*(el)
S_i = Sii(H_i)
Then,
ui(s7(6y),s2,(0-0);0) = (s (6;),s,(6-1); 6;), vi, v0;, V0, VvO_;
But we know
g(sf(ei).Sii(‘?—i)) = f(8), Vo )
= ul-(f(Hi, 9_1'); 91) = ui(f(Hi,G_l-); Hi), Vi, Vﬁi, Vﬁi, V9_i
This completes the proof.

> Note.
= This works for other equilibrium concepts as well (obviously)
= Requires commitment by the principal.

+ Gibbard-Satterthwaite Theorem. (also, cf. MWG Prop. 21.E.2.)
» Lemma 1. Suppose R; only contains strict preferences, and f(6) is truthfully

implementable (aka “strategy proof™), the f(8) is monotonic.

= This links implementability to the property of SCF.

» Proof. Suppose f(8) = x, and for all y € X, 6, is such that agent i prefers x to y
whenever he prefers x to y in 8. We need to show that f(6;,0_;) = x.
Suppose for contradiction that, when the true state is 8 = (6;,6_;),

F61,6-) =y #x.

Agent i could get y in state 8’ = (6], 6_;) but doesn’t lie (by assumption). So i must
rank x above y in state 8 = (6;,6_;).

Same reasoning, if the true state is ', then i could lie and claim 6; (and get x). But
that’s not optimal by assumption. So i must rank y above x in ;.

Since no alternatives can be indifferent, need to have
f(6;,6_) =(6,6_)=x

Repeat the argument, one at a time, for all other individuals to get

f(64,...,6;)) =f(64,...,0])
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AN

: e Zil0)
L(f(#,6-).8)
=z

. —
-
Xpi

Lf0.0 ).0)

» Lemma 2. If £(0) is monotonic and onto (i.e. f(©) = X), then f(0) is efficient.
» Proof. Choose x € X, because f is onto, f(8) = x for some 8. By M, f(6') = x
because
u(x, 0;) > u(y,6,), vy eX
Therefore, f(6) is efficient.

» Theorem (Gibbard-Satterthwaite). Suppose |X| = 3, and strict preferences only, and
f(®) = X. Then, the social choice function f(8) is truthfully implementable in dominant
strategies if and only if f(6) is dictatorial, i.e.

3i,V0 : f(0) € argmaxu;(x, ;)
=  Proof. “=” Lemma 1 + Lemma 2 + Theorem III of part 2
“&” show for yourself.

X2 p

f(07,0_;) must lie
in shaded set
. Ei(”;)

X1;

% Example. Clarke-Groves Mechanism (with quasi-linear preferences)

> Assume
yeY,t € R,Zti < 0}
i

X = {(y, tl' ey tI)

ui(x,0) =v(y,0) +t
» Pareto Optimality:
= Hold all but one agent’s utility to a certain constant level, then maximize the utility of
the remaining agent’s utility subject to resource constraint.
e Suppose there are only two agents with quasi-linear utility functions. Then, Pareto
optimality is given by
ot {uz =v,(y)+t, =1
Tl +t,=0
t,+t,=0 = t,=—t;
=> U =1v,(y) -t =1

maxu1 = vl(y) + tl ,
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=> 4 =v()-1u
Hence, the objective function becomes
max v (y) + v, (y)
Thus, finding Pareto optimality is the same as maximizing the sum of individual
utilities. The solution is

y*(6) € argmax ) v,(3,6)

l
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Dominant Strateqy Implementation (cont’d)

% Clarke-Groves Mechanism
» Environment (see last time).

» Theorem (Clarke, Groves, Vickery). There is a social choice function f(6) with an
efficient outcome

y'(6) € argmax ) v(7,6)

l
that can be implemented in dominant strategies.

= Proof. Consider the following (direct) mechanism (the “Groves Mechanism”):
Recall that 8; is the announced 6; of agent i (which may or may not be true)

y*(0) € arg maxz v(y,6,), Vvheo

(@)= Y u008.08) +n(d)

J#i

externality that i
generates for all other individuals

given their announced §j's
where h;(+) is some arbitrary function of 8_;. Then,
w (¥, t,0;) = vi(y,0)) + ¢
Given this mechanism, agents have a dominant strategy to tell the truth because
Uu; (y, t, éi = 91) = vi(y*(ei, é—i)' 91) + Z vj(y(ﬁl-, é—i)' é}) + hi(é—i)
Jj#i

= z vi(y*(ei, é_i), 0;, é_i) + constant

by defof)f* ~ ~
> Z v; (y*(@l-’, G_i), 0;, H_l-) + constant

l
for all §_;, all §; # 6;, and all i.
e The idea is that
¢ The outcome of the mechanism is such that y* is efficient if truth-telling is
equilibrium
¢ Transfer to each agent comes in two parts:

(a) Externality given announcements of others ensures truth-telling will
maximize surplus (even if others lie!)
(b) Constant that only depends on what others announce

» Notes:
= Special case of the Groves mechanism is the Clarke (or pivotal) mechanism:
m(0-) == ) v(r(6-).9)
J#i
where y*;(0_;) € argmax ¥, v;(y, 6)).
e So you pay only if you are pivotal, and your payment equals the net externality
imposed on others.
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= Special case of Clarke mechanism is the Vickery Auction (i.e. second price seal-bid
auction / English auction).

= Reverse of the theorem also holds: If the space of the utility functions is sufficiently
rich, then every incentive compatible mechanism is a Groves mechanism.

= However, the outcome of the Groves mechanism is not ex post efficient because the
budget is not balanced in general.

Page 34 of 48



Econ 804 Micro Mar 23, 2011

Groves Mechanism

% Claim. Groves Mechanism is not balanced in general.
» Corollary. There does not exist a mechanism that implements the efficient allocation in
dominant strategy in general.

> Proof (by example). Suppose I = 2, y = {0,1} (costless public project) with
u(y,0)=6;y+t;, 06,€6;=R
The efficient allocation is
y*(0,,0,) =1 iff 6, +6,=>0
t1(01,6;) + t,(6,,0;) =0, V0,0, R
Groves Mechanism is a direct mechanism, so it takes the announced type, 64, 0,, as
arguments:
y*(0,,8,)=1 iff 6, +6,>0
t1(61,6,) = 0,y*(6:,6) + hi(8,)
tz(épéz) = §1y*(§1; 92) + h2(§1)

T+

)

Show: if the mechanism is balanced on T, it will be unbalanced in T ™.
Recall that éi = 6; in Groves mechanism.
(01,6) ETT = y'(6,,6,) =1
t1(01,6,) = 6, + hy(0;)
t2(61,0;) = 61 + hy(61)
t1(01,6;) + t5(6,,0,) = 0; + 0, + hy(8,) + h,(6,) =0
= 0; +9h2 (9}11) (:9 ;92 - h1(326)' V(61,6;)
1t n2(601) =Yy 1
M RS
Now consider (64,0,) ET~ = y*(6:,6,) =0
{t1(91' 6;) = hy(6;)
t,(61,0;) = h,(6,)
From (x),
= i+t =—y—0,+y—0,
= —(6,+6,)
=0
The inequality is strict when 8, + 8, < 0. So there is a surplus on T~. Therefore the sum
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is unbalanced!
= Notes.
e Budget balance (ex post efficiency) can be overcome if either
(a) There is a principal = 3™ party who can break the budget (e.g. second price
sealed bid auction)
(b) There is at least one agent whose preferences are known — give deficit /
surplus generated to that “outside”
e Results do depend on the “richness” of the type space. For instance, @ = {—2,1}
and check.
e Large number of agents can lead to approximate efficiency.
¢ For example, get surplus to one individual, then efficiency loss per agent — 0.
e Individual rationality (participation), once types are known, is not necessarily
ensured as long as no outside source (3rd party financing deficit) is available.
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Bayesian Nash Implementation

R/
A X4

X/
°e

R/
L4

X/
°e

X/

Environment — with incomplete and asymmetric information

» State of the World: 8 = (64, ...,6;), drawn from © = 0, X --- X ©; according to some
probability density function ¢(8)

> Agent’s utility function u;(x, 6;) is a VNM utility function

» Each agent privately observes his own 6; only, but holds beliefs about 6_; =
(64, ...,60;_1,0i4+1, ...,0;) ex ante, those beliefs coincide with ¢(8), and are common
knowledge.

Mechanism I' = (.5'1, e Sp; g(-)) where g : § — X defines, together with the set of agents,

agents’ utility functions, and density ¢, a game of incomplete information. The equilibrium
concept is the BNE (and refinements thereof).
» Recall: BNE = NE ex ante or in expectation.

Definition. The mechanism I" implements the social choice function f(-) in BNE if there is a
BNE of T, (si“ (G (0,)) such that

g(s*(8)) =1(6), vo.

Definition. The direct mechanism I, in which s;(8;) = 8;(8,), is truthfully implementable if
it has a BNE in which

Vi, V0, € 0,V0; # 0; : Eg_,[u;(f(6:,0_:);0;16;] = Eg_,[w;(f(6;,6_);0,)16,]
> Note that E,_, already takes into account that everybody tells the truth.

Revelation Principal for BNE. If f(6) is (fully) implementable in BNE, then f(6) is

truthfully implementable in BNE, i.e. the direct mechanism [}, = (91, w05 f (9)) has

6; = 0, for all 6;.

» Note. In general, full truthful implementation in BNE is not guaranteed. In other words,
there may be other BNE’s in which people lie in the direct mechanism.

Revenue Equivalence Theorem. Assume each of a given number [ risk neutral buyers of an
object has a privately known signal 8; that is independently drawn from some interval [Qi, Ei]
with positive density ¢;(6;) > 0 everywhere. Then, any auction (mechanism) in which

(a) the object goes to the buyer with the highest signal

(b) any buyer with the lowest feasible signal expects no surplus
yields the exact same expected revenue for the seller.
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Proof of Revenue Equivalence Theorem

% Revenue Equivalence Theorem. Assume each of a given number [ risk neutral buyers of an
object has a privately known signal 8; that is independently drawn from some interval [Ql, gi]
with positive density ¢;(6;) > 0 everywhere. Then, any auction (mechanism) in which

(a) the object goes to the buyer with the highest signal
(b) any buyer with the lowest feasible signal expects no surplus
yields the exact same expected revenue for the seller.

» Note that the theorem applies to both the
= Private value model: 6; is the individual private valuations of bidder i
= Common value model: 6; signal about a common value of the object being sold, e.g.
oil field.

» Proof (for independent private values). 6; is the valuation of i.
The revelation principle implies that we can wlog restrict attention to direct revelation
mechanisms (DRM) with
u; = 6y — t; = 0,y;(6;) — t;(6;)
where
y;(8;) = probability of receiving the object if valuation is 6;
t;(8;) = transfer to seller if valuation (also the announcement) is 6,

Expected utility of i under the DRM
u;(0;) = E_g,[0;y:(0;,0_)) — t;(6;,0_;)]
= 0,y:(6;) — t:(6)
Bayesian incentive compatibility requires that V8; # 6;,
w(©8) = 0710 — £(8) = 051(8) ~&(8),
w;(6;) = 6:7:(6;) — t:(6:) = 0:7:(6) — :(6,), (%)

(x) & ui(QAi) >u;(6;) + (ql - 6,)y:(6,)
() © w(8;) =w(6)+ (8, —6;) — 7:,(6)

()u(e) ui(6:) ¢

y ( ) 9 - 1(9 ) vei) éi
Let §; > 6;. Then,
ou;(6; ) 5.6
a0;

This means that the equilibrium utilities (in any game with the same y;(6;)) are fully
determined, up to a constant!! Integrate up gives

0;
w®) = (o) + | s

So the expected utility of individual i. Now consider any two auction that have the same
ui(QL-) and the same probability of receiving the object, y;(6;), for all 8; and all i. These
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two auctions will generate the same u;(6;) = 0,y;(6;) — t;(6;), then
= expected payments t;(6;) must be the same in both auctions; and
= expected revenue of the seller is the same. |

% Remark.
When true state is 6;

6:7:(6,) — t;(6,) = 6,:(6;) — t:(6;)
When true state is 0; L R R
0:7:(6;) — t:(0;) = 8,5:(6;) — t:(6;)
Then,
6; (yi(éi) - )7i(9i)) >t,(6;,) —t:(8;) = 6 (yi(éi) - )7i(9i))
= (6;-6,) (yi(éi) - )71'(91')) >0
= 0,26, = 3(6;) =756,
That is, the probability of winning the object has to be non-decreasing in 6;.
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Bayesian Nash Implementation (cont’d)

o,

% Theorem. There is a Pareto efficient social choice function f(6) that can be truthfully
implemented in Bayesian Nash equilibrium (BNE) in the following setting:

» Quasi-linear preferences: u;(x, 6;) = v;(y,0;) + t;

» 0,’s are drawn independently

» Proof. Consider the expected externality mechanism (or d’Apresmont Gerard-Varet

mechanism):
y*(0) € arg mﬁxz v;(v(0),8;)
i

t(9) = Fo_, | ) 0" (8,0-1),6)) | + hi(0-)

J#i

Hi(0;)

= Note that in truth telling equilibrium _; = 6;
. y*(@) is ex post efficient
* H;(6;) depends only on 6;, because all the 6_;’s are expected out

= [s it optimal to tell the truth? — Yes.
éi € arg max Eg_i vi(y*(éi' H—i)' 61) + Z vj(y*(éi' H—i)' 0]) + hi(e—i)
J#i

- y*(0) = arg maxz vl-(y(é), éi)

= éi :Hi,

= We can get budget balance. Since Hi(éi) does not depend on 8_;, so it can be paid for
by others without distorting their incentives to reveal the truth. One possibility is

hi(6-;) = —%Z H;(6;)

J#i

= 4(6) = H(6) - == > H(5)

Jj#i

= Y68 = ) H(0) - =7 9.U = DH(8) =0

L

This completes the proof.

= Notes:
e There may be other BNE where everybody lies (i.e. not full implementation)

e The mechanism is still not individually rational (in the interim sense, i.e. given
people know their own valuations)
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« Theorem (Myerson-Satterthwaite). Consider a bilateral trade setting where the buyer and

X/

the seller are risk neutral. Suppose their valuations s and 85 are drawn independently from
distributions with strictly positive densities over [QS, 95] and [QB,HB], and Oz and 65 are
private information. Then, there does not exist a mechanism that

(a) implements the efficient allocation in BNE, and

(b) is individually rational (i.e. gives non-negative expected gains from trade).

Solomon Example.

Two agents, A, B

Two states of the world, «,

Environment with complete (but not verifiable) information
Outcomes: X = {a, b, c,d}

Social choice function: f(a) = aand f(B) = b
Preferences.

Look at direct revelation mechanism

“shoot them all” mechanism

VVVVVVVY

Page 41 of 48



Econ 804 Micro Apr 1, 2011

Second-Degree Price Discrimination

X/
°e

Optimal pricing scheme for a monopolist who do not know the preferences of its customer

% Two parties

» Principal (monopolist)

» Agent (customer)
+»+ Principal sells a good to the agent

» Outcome X = (y, t), where y is quantity sold / consumed and t is price
¢ Preferences

uy, = v(y,0) up =t—cy, c=0

—-t,
% &
< Distribution of 8:
0 € {6,,0u}, Pr(6 =6y) =p

X/
X4

Efficiency:

L)

y* € argmaxv(y,0) —cy
The FOC is
v'(y*,0)=c
t doesn’t matter.

¢ Profit maximizing for the monopolist (if 8 is known)

ntlaxt—cy, s.t. v(y,0)—t=0
Y

participation constraint
This is the Pareto program.

yE =y,  t=v(0)
This outcome is efficient!
» Note that the monopoly outcome is efficient because 6 is known.

t
A

v(y,04)
\ v(y,6.)
N\

Y

Information y*(8,) y*(6y) y
rent

Assume:
v(y,0.) <v(y,0y), y>0
U’(y, HL) < vl(yr HH)' V_'y
» Example: v(y, 0) = 0v(y)
» If 8 is not known, the first best allocation (i.e. the black and red dots) cannot be
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implemented because it is not incentive compatible.
» However, the efficient y can be implemented (the black and blue dots)

> Second best

max  p(ty —cyy) + (A —p)(t, —cy.)
Lt ute)

subject to
vy, 0y) —ty =0
v(y,0,) —ty =0
vy, On) —ty 2 vy, 04) — L,
v(y,0,) —t, 2 v(yy,0,) —ty
Both constraints are binding. FOC is
V'u, ) =c = yy =Yg
vV'(y,0,)>c > y, <ys
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Moral Hazard Problem

R/
A X4

R/
A X4

R/
A X4

K/
£ %4

In a moral hazard problem, the information asymmetry arises after the mechanism (or

contract) is designed.

» In comparison, in the adverse selection problem, the information asymmetry issue is ex
ante—i.e. the principal is aware of the information asymmetry when designing the
mechanisms

Examples

» Employee—employer

» Lawyer—client

» Insure—insurance company
» CEO—stockholders

Environment:
» Principal, agent (two parties)
> Principal owns a technology F (x; a), where
X E{Xy, s Xy 1 X <Xy < o0 < Xy}
is an observable and verifiable (i.e. the court can observe it) outcome.
a€A
is an unobserved action taken by the agent (e.g. effort, investment decision, attention,...).
F(x;a)
is a probability distribution over x given a, with
fi(a) = Pr{x = x;|la} > 0, Va, Vi
» The principal does not want to, or cannot, choose a herself. So she delegates a to the
agent.
» Although a is not observable, the principal can contract indirectly on a through paying a
wage w(x). This is the “incentive wage”.
» Utility function for the principal:
up(x,a,w) = v(x) —w(x)
= Note that the principal is risk neutral.
» Utility function for the agent:

u,(w,a) = u(w(x)) —g(a), u' >0, u”" <0

First-best solution (directly contract on a as if it is observable)
» Suppose a is observable / verifiable, then we can directly contract on a. The principal can
induce any desired @ by specifying a wage
W(a):{w ¥fa=a
—oo ifa+#a
> What is the best @ and the best w(@, x) for the principal? We can solve for these in two
steps:
1. Suppose the principal wants to induce a € A, what is the optimal (i.e. cost
minimizing) wage scheme, w(x), for this particular action — wage cost c(a)
2. Which action does the principal want the agent to take, given the corresponding wage
cost c(a).
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> Step 1: take a as given, let w; = w(x;)

max _E(up) = Zfi(a)(v(xi) —w;)

wi€{wy,...wn}

subject to
E() = ) fila)(uw) - (@) 2 @

= Note that this is the Pareto program, so the solution will be efficient.

Use a Lagrangian:
L= fil@@0) —w) + 2
i

The first-order condition is

O @+ ) =0 & M) =1, Vi

Y @) - 9@) -

=S W =Wy, = =Wy,

The wage is constant (over all outcome). This requires that u'’ < 0.

= [f the agent is risk averse, the risk neutral principal should insure the agent fully, i.e.
should not expose the agent to any income risk.

= It is costly to pay the agent different wages based on different outcomes, because
agents are risk averse while the principal is not.

So in the first-best solution, the principal pays a fixed wage, which will be such that the
participation constraint is binding:

uw)—g(@)=u = w=u(u+g(a) = c(a)

> Step 2: given cFB(a), the principal chooses a so as to
max E(up) = ) fi(@[v(e)] - (@)

l
= Implicit assumption: the principal’s participation constraint is satisfied.

++ Moral hazard: a is not unobservable.
» If the principal still pays the flat wage, then the agent is going to choose
max, = uw)—g(a) = a= argmeifll g(a)
a a

The “least cost action”.
» Solve the second best contract in the same two steps as above.

» Step 1: cost-minimizing way of inducing some action a

Wie{r\/{’/'lll,l.’.l.,wn} z ]Cl (a) Wl
2

subject to

> fl@uw) - g(a) 2 @
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D fi@uw) - 9@ = ) fila)utw) - g(a)), Ve #a

The constraints are not necessarily convex. To make it convex, use variable
transformation: u; = w(w;). Then, letting v(-) = u~1(-), the problem becomes

D fil@yw)

uiefuyg,...un

subject to

> fl@u - g(@ = @
Y fi@w-g@ =Y fla)u-g(e) Vo *a

4 l

Note: participation is binding. Suppose it does not bind, then the principal could
always reduce 4i; = u; — € and make herself better off.

Whenever a # arg min, g(a), the incentive compatibility constraint for at least one
action a; # a is binding. So the agent is indifferent between at least two actions under
the optimal contract.

Why would the agent being indifferent between taking two actions take the action
that the principal wants him to take? Because otherwise there would be no best
response for the principal when there is a positive probability that the agent is going
to choose the “unwanted” action. This means that there would be no Nash equilibrium.
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Moral Hazard (cont’d)

% Recall the principal’s problem:

el fi@w
14

subject to

Z fil@uw;) —gla) = u
Z fil@uwy) — g(a) 2 Z fila)uw) —g(a), Va;#a

l L
Using variable transformation, the problem becomes

uieéﬁ‘.?.un}z fi(@v(w)
14

subject to

> fi@u - g@) 2
> fl@u - 9@z filw)u-g(e). Ve #a

Let A and p; be the Lagrange multipliers on the two sets of constraints. The FOC with

respect to u; is
N } ‘ fi(a) .
vi(u) =21+ j,uj<1—fi(a)>, Vi

Suppose 4 is the “base utility”. Then,
fi(aj) < fi(a) = agentearns a "bonus" relative to his base utility
Intuitively, if the principal’s desired outcome is more likely to occur, then she should pay the
agent more. By the same token,
ﬁ-(aj) > f;(a) = agentis "punished"

» Note: the principal’s problem can be thought of as a statistical inference problem. What

the principal cares about is only how the outcome indicates what the agent has done.

Since in reality,

X; < <Xy B oWy < < Wy,
we need the wage to be monotone, so that it’s a good “estimate” of the agent’s effort.

This gives a general result about the cost for the principal:
c5B(a) > cfB(a), Va # argmin g(a)
a

» Step 2: the principal solves
max E fi(@v(x;) —cB(a) - a8
a
i
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% Example.
» Two actions a € {a,, a,}, g(a,) > g(a,)
» Suppose the principal wants to implement a;. Choose u; such that

viiu) =A+u (1 — fi(ag))

filan)
» When is w; increasing i? — The likelihood ratios
filap)  fulae)
fian)” ™ fular)

must be monotone in i for w; to be monotone in i. This is the monotone likelihood ratio
property.
filap) .

[ACH) lini

w; Tini &

K/

« The characteristics of the optimal contract are

The agent is not fully insured

Basic trade-off: risk allocation v.s. incentive

Optimal wage scheme does not depend on the principal’s benefit x;

The agent’s participation constraint is binding — the agent does not earn a rent. This
implies that moral hazard does not induce labor market distortions. So the basic moral
hazard model cannot explain the voluntary unemployment.

YV VYV

R/

*» Special case: agent is risk-neutral
» If the agent is risk-neutral, then the principal can get the first-best.
» Suppose the principal pays

W; = X; — P

us =) fl@x —g@—P =

l
The agent is going to maximize total surplus.
= Effectively, this is to say that the principal is selling the agent the technology, “sell
the shop”. So that the agent is the residual claimant for x;.
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